Mechanism for breaching the blood-brain barrier described for the first time
(Medical University Vienna 4/21/2023)
Among the biggest environmental problems of our time, micro- and nanoplastic particles (MNPs) can enter the body in various ways, including through food. And now for the first time, research conducted at MedUni Vienna has shown how these minute particles manage to breach the blood-brain barrier and as a consequence penetrate the brain. The newly discovered mechanism provides the basis for further research to protect humans and the environment. The study results were recently published in the scientific journal nanomaterials.
The study was carried out in an animal model with oral administration of MNPs, in this case polystyrene, a widely-used plastic which is also found in food packaging. Led by Lukas Kenner (Department of Pathology at MedUni Vienna and Department of Laboratory Animal Pathology at Vetmeduni) and Oldamur Hollóczki (Department of Physical Chemistry, University of Debrecen, Hungary) the research team was able to determine that tiny polystyrene particles could be detected in the brain just two hours after ingestion. The mechanism that enabled them to breach the blood-brain barrier was previously unknown to medical science. “With the help of computer models, we discovered that a certain surface structure (biomolecular corona) was crucial in enabling plastic particles to pass into the brain,” Oldamur Hollóczki explained.
Researching impact on health
The blood-brain barrier is an important cellular barrier that prevents pathogens or toxins from reaching the brain. The intestine has a similar protective wall (intestinal barrier), which can also be breached by MNPs, as various scientific studies have demonstrated. Intensive research is being conducted on the health effects of plastic particles in the body. MNPs in the gastrointestinal tract have already been linked with local inflammatory and immune reactions, and the development of cancer. “In the brain, plastic particles could increase the risk of inflammation, neurological disorders or even neurodegenerative diseases such as Alzheimer’s or Parkinson’s,” said Lukas Kenner, pointing out that more research is needed in this area.
Read the entire article on Medical University Vienna